Post

Fórmulas de Ângulo Múltiplo e Meio Ângulo

Examinamos as fórmulas de ângulo duplo e triplo e as derivamos das Fórmulas de Adição Trigonométrica. Também derivamos as fórmulas de meio ângulo a partir das fórmulas de ângulo duplo.

Fórmulas de Ângulo Múltiplo e Meio Ângulo

TL;DR

Fórmulas de Ângulo Duplo

  • \[\sin 2\alpha = 2\sin \alpha \cos \alpha\]
  • \[\begin{align*} \cos 2\alpha &= \cos^{2}\alpha - \sin^{2}\alpha \\ &= 2\cos^{2}\alpha - 1 \\ &= 1 - 2\sin^{2}\alpha \end{align*}\]
  • \[\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^{2}\alpha}\]

Fórmulas de Ângulo Triplo

  • \[\sin 3\alpha = 3\sin \alpha - 4\sin^{3}\alpha\]
  • \[\cos 3\alpha = 4\cos^{3}\alpha - 3\cos \alpha\]

Fórmulas de Meio Ângulo

  • \[\sin^{2}\frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}\]
  • \[\cos^{2}\frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}\]
  • \[\tan^{2}\frac{\alpha}{2} = \frac{1 - \cos \alpha}{1 + \cos\alpha}\]
  • \[\tan \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha}\]

Pré-requisitos

Fórmulas de Ângulo Múltiplo

Fórmulas de Ângulo Duplo

  • \[\sin 2\alpha = 2\sin \alpha \cos \alpha\]
  • \[\begin{align*} \cos 2\alpha &= \cos^{2}\alpha - \sin^{2}\alpha \\ &= 2\cos^{2}\alpha - 1 \\ &= 1 - 2\sin^{2}\alpha \end{align*}\]
  • \[\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^{2}\alpha}\]

Derivação

Podemos derivar as fórmulas de ângulo duplo a partir das Fórmulas de Adição Trigonométrica.

\[\begin{gather} \sin ( \alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \label{eqn:sin_add} \\ \cos ( \alpha + \beta ) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \label{eqn:cos_add} \\ \tan ( \alpha + \beta ) = \frac { \tan \alpha + \tan \beta } { 1 - \tan \alpha \tan \beta } \label{eqn:tan_add} \end{gather}\]

Substituindo $\beta$ por $\alpha$:

Da equação ($\ref{eqn:sin_add}$)

\[\sin 2\alpha = 2\sin \alpha \cos \alpha\]

Da equação ($\ref{eqn:cos_add}$)

\[\begin{align*} \cos 2 \alpha &= \cos ^ { 2 } \alpha - \sin ^ { 2 } \alpha \\ &= 2 \cos ^ { 2 } \alpha - 1 \\ &= 1 - 2 \sin ^ { 2 } \alpha \end{align*}\]

Da equação ($\ref{eqn:tan_add}$)

\[\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^{2} \alpha}\]

Fórmulas de Ângulo Triplo

  • \[\sin 3\alpha = 3\sin \alpha - 4\sin^{3}\alpha\]
  • \[\cos 3\alpha = 4\cos^{3}\alpha - 3\cos \alpha\]

Derivação

Usando $\sin 2\alpha = 2\sin\alpha \cos\alpha$ e $\cos 2 \alpha = 1 - 2\sin^{2}\alpha$:

\[\begin{align*} \sin 3 \alpha &= \sin ( \alpha + 2 \alpha ) = \sin \alpha \cos 2 \alpha + \cos \alpha \sin 2 \alpha \\ &= \sin \alpha ( 1 - 2 \sin ^ { 2 } \alpha ) + \cos \alpha ( 2 \sin \alpha \cos \alpha ) \\ &= \sin a ( 1 - 2 \sin ^ { 2 } \alpha ) + 2 \sin \alpha ( 1 - \sin ^ { 2 } \alpha ) \\ &= 3 \sin \alpha - 4 \sin ^ { 3 } \alpha . \end{align*}\]

Da mesma forma, usando $\sin 2\alpha = 2\sin\alpha \cos\alpha$ e $\cos 2 \alpha = 2\cos^{2}\alpha - 1$:

\[\begin{align*} \cos 3 \alpha &= \cos ( \alpha + 2 \alpha ) = \cos \alpha \cos 2 \alpha - \sin \alpha \sin 2 \alpha \\ &= \cos \alpha ( 2 \cos ^ { 2 } \alpha - 1 ) - \sin \alpha ( 2 \sin \alpha \cos \alpha ) \\ &= \cos \alpha ( 2 \cos ^ { 2 } \alpha - 1 ) - 2 \cos \alpha ( 1 - \cos ^ { 2 } \alpha ) \\ &= 4 \cos ^ { 3 } \alpha - 3 \cos \alpha \end{align*}\]

Fórmulas de Meio Ângulo

  • \[\sin^{2}\frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}\]
  • \[\cos^{2}\frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}\]
  • \[\tan^{2}\frac{\alpha}{2} = \frac{1 - \cos \alpha}{1 + \cos\alpha}\]
  • \[\tan \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha}\]

Derivação

Da fórmula de ângulo duplo $\cos 2\alpha = 2\cos^{2}\alpha - 1 = 1 - 2\sin^{2}\alpha$, substituindo $\alpha$ por $\frac{\alpha}{2}$:

\[\cos \alpha = 1 - 2\sin^{2}\frac{\alpha}{2} = 2 \cos^{2}\frac{\alpha}{2} - 1 .\]

De $ \cos \alpha = 1 - 2\sin^{2}\frac{\alpha}{2} $:

\[\sin^{2}\frac{\alpha}{2}=\frac{1-\cos \alpha}{2} .\]

De $ \cos \alpha = 2 \cos^{2}\frac{\alpha}{2} - 1 $:

\[\cos^{2}\frac{\alpha}{2}=\frac{1+\cos \alpha}{2} .\]

A partir disso, podemos mostrar que:

\[\tan ^ { 2 } \frac { \alpha } { 2 } = \left . \left( \sin ^ { 2 } \frac{\alpha}{2}\right) \middle/ \left( \cos ^ { 2 } \frac { \alpha } { 2 } \right) \right . = \frac { 1 - \cos \alpha } { 1 + \cos \alpha }\]

E também:

\[\tan \frac { \alpha } { 2 } = \frac { \sin \frac { \alpha } { 2 } } { \cos \frac { \alpha } { 2 } } = \frac { 2 \sin \frac { \alpha } { 2 } \cos \frac { \alpha } { 2 } } { 2 \cos ^ { 2 } \frac { \alpha } { 2 } } = \frac { \sin \alpha } { 1 + \cos \alpha }\]
This post is licensed under CC BY-NC 4.0 by the author.