Post

Product-to-Sum and Sum-to-Product Identities

Explore formulas for transforming products of trigonometric functions into sums or differences, derive these formulas from trigonometric addition theorems, and then derive formulas for transforming sums or differences of trigonometric functions into products.

TL;DR

Product-to-Sum Identities

  • \[\sin \alpha \cos \beta = \frac { 1 } { 2 } \{ \sin ( \alpha + \beta ) + \sin ( \alpha - \beta ) \}\]
  • \[\cos \alpha \sin \beta = \frac { 1 } { 2 } \{ \sin ( \alpha + \beta ) - \sin ( \alpha - \beta ) \}\]
  • \[\cos \alpha \cos \beta = \frac { 1 } { 2 } \{ \cos ( \alpha + \beta ) + \cos ( \alpha - \beta )\}\]
  • \[\sin \alpha \sin \beta = - \frac { 1 } { 2 } \{ \cos ( \alpha + \beta ) - \cos ( \alpha - \beta ) \}\]

Sum-to-Product Identities

  • \[\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}\]
  • \[\sin A - \sin B = 2\cos \frac{A+B}{2}\sin \frac{A-B}{2}\]
  • \[\cos A + \cos B = 2\cos \frac{A+B}{2}\cos \frac{A-B}{2}\]
  • \[\cos A - \cos B = -2\sin \frac{A+B}{2}\sin \frac{A-B}{2}\]

It’s beneficial to learn not only the formulas but also their derivation processes.

Prerequisites

Product-to-Sum Identities

  • \[\sin \alpha \cos \beta = \frac { 1 } { 2 } \{ \sin ( \alpha + \beta ) + \sin ( \alpha - \beta ) \}\]
  • \[\cos \alpha \sin \beta = \frac { 1 } { 2 } \{ \sin ( \alpha + \beta ) - \sin ( \alpha - \beta ) \}\]
  • \[\cos \alpha \cos \beta = \frac { 1 } { 2 } \{ \cos ( \alpha + \beta ) + \cos ( \alpha - \beta )\}\]
  • \[\sin \alpha \sin \beta = - \frac { 1 } { 2 } \{ \cos ( \alpha + \beta ) - \cos ( \alpha - \beta ) \}\]

Derivation

We use the Trigonometric Addition Formulas

\[\begin{align} \sin(\alpha+\beta) &= \sin \alpha \cos \beta + \cos \alpha \sin \beta \tag{1}\label{eqn:sin_add}\\ \sin(\alpha-\beta) &= \sin \alpha \cos \beta - \cos \alpha \sin \beta \tag{2}\label{eqn:sin_dif} \end{align}\]

Adding ($\ref{eqn:sin_add}$) and ($\ref{eqn:sin_dif}$), we get

\[\sin(\alpha+\beta) + \sin(\alpha-\beta) = 2 \sin \alpha \cos \beta \tag{3}\label{sin_product_to_sum}\] \[\therefore \sin \alpha \cos \beta = \frac { 1 } { 2 } \{ \sin ( \alpha + \beta ) + \sin ( \alpha - \beta ) \}.\]

Subtracting ($\ref{eqn:sin_dif}$) from ($\ref{eqn:sin_add}$), we get

\[\sin(\alpha+\beta) - \sin(\alpha-\beta) = 2 \cos \alpha \sin \beta \tag{4}\label{cos_product_to_dif}\] \[\therefore \cos \alpha \sin \beta = \frac { 1 } { 2 } \{ \sin ( \alpha + \beta ) - \sin ( \alpha - \beta ) \}.\]

Similarly, using

\[\begin{align} \cos(\alpha+\beta) &= \cos \alpha \cos \beta - \sin \alpha \sin \beta \tag{5}\label{eqn:cos_add} \\ \cos(\alpha-\beta ) &= \cos \alpha \cos \beta + \sin \alpha \sin \beta \tag{6}\label{eqn:cos_dif} \end{align}\]

Adding ($\ref{eqn:cos_add}$) and ($\ref{eqn:cos_dif}$), we get

\[\cos(\alpha+\beta) + \cos(\alpha-\beta) = 2 \cos \alpha \cos \beta \tag{7}\label{cos_product_to_sum}\] \[\therefore \cos \alpha \cos \beta = \frac { 1 } { 2 } \{ \cos(\alpha+\beta) + \cos(\alpha-\beta) \}.\]

Subtracting ($\ref{eqn:cos_dif}$) from ($\ref{eqn:cos_add}$), we get

\[\cos(\alpha+\beta) - \cos(\alpha-\beta) = -2 \sin \alpha \sin \beta \tag{8}\label{sin_product_to_dif}\] \[\therefore \sin \alpha \sin \beta = -\frac { 1 } { 2 } \{ \cos(\alpha+\beta) - \cos(\alpha-\beta) \}.\]

Sum-to-Product Identities

  • \[\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}\]
  • \[\sin A - \sin B = 2\cos \frac{A+B}{2}\sin \frac{A-B}{2}\]
  • \[\cos A + \cos B = 2\cos \frac{A+B}{2}\cos \frac{A-B}{2}\]
  • \[\cos A - \cos B = -2\sin \frac{A+B}{2}\sin \frac{A-B}{2}\]

Derivation

We can derive the Sum-to-Product Identities from the Product-to-Sum Identities.

Let \(\alpha + \beta = A, \quad \alpha - \beta = B\)

Solving these equations for $\alpha$ and $\beta$, we get

\[\alpha = \frac{A+B}{2}, \quad \beta = \frac{A-B}{2}.\]

Substituting these into ($\ref{sin_product_to_sum}$), ($\ref{cos_product_to_dif}$), ($\ref{cos_product_to_sum}$), and ($\ref{sin_product_to_dif}$) respectively, we obtain the following formulas:

\[\begin{align*} \sin A + \sin B &= 2\sin \frac{A+B}{2}\cos \frac{A-B}{2} \\ \sin A - \sin B &= 2\cos \frac{A+B}{2}\sin \frac{A-B}{2} \\ \cos A + \cos B &= 2\cos \frac{A+B}{2}\cos \frac{A-B}{2} \\ \cos A - \cos B &= -2\sin \frac{A+B}{2}\sin \frac{A-B}{2}. \end{align*}\]
This post is licensed under CC BY-NC 4.0 by the author.

Comments powered by Disqus.